If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(A)=-2A^2+300A
We move all terms to the left:
(A)-(-2A^2+300A)=0
We get rid of parentheses
2A^2-300A+A=0
We add all the numbers together, and all the variables
2A^2-299A=0
a = 2; b = -299; c = 0;
Δ = b2-4ac
Δ = -2992-4·2·0
Δ = 89401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{89401}=299$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-299)-299}{2*2}=\frac{0}{4} =0 $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-299)+299}{2*2}=\frac{598}{4} =149+1/2 $
| 36=10-7x | | 285-u=125 | | 9x+12=2x+34 | | 16(s-18)=-16 | | -8=-5+w/3 | | 16d+20=20 | | -8=5+w/3 | | 2q+15=19 | | t^2-6t-12=59 | | -x+242=100 | | (15+18+25+p)/4=20 | | 8x+68x=42x | | 16=y/5-11 | | 12x-29-(4x+1)=180 | | x/0.3=1.7/0.9 | | -5x(-5x+12)+6x=95 | | 18-7x=10-3(x+4) | | 7x13=7x(10x3 | | 90+8e+8+9e-3=180 | | y=1/2(-1)+1 | | 3q+4=4q-2.5 | | 8i-10=3i+4490 | | 7x+10=4x+32 | | X^2-5x+10=44 | | 12+13x=5x | | 7v-2v+6=16 | | 8x+12=4x+22 | | 9=u/3-14 | | u/2-10=7 | | 2x^2-9x+81=0 | | 187=83-y | | 286-x=231 |